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Abstract. Phase transitions in polytypic substances can display a rich structure. A polytypic
material, being formed from stacked layers, each layer having freedom of orientation, has an
infinite number of possible structures. Thus a phase transition between two simple structures
could occur directly, or via an infinite sequence of intermediate phases. Such a sequence,
called a ‘devil’s staircase’, can arise from simple and general mathematical models. This paper
presents a simple model in which the phonon free energy drives a temperature-induced phase
transition, the mechanism which is believed to cause phase transitions in SiC, CdI2 and PbI2.
The form of interaction between changes in the stacking orientation caused by the phonon free
energy is found to be inversely proportional to the square of the separation of the changes, but
of alternating sign. Although no staircase results from this interaction, one intermediate phase
does arise, and others are barely unstable.

1. Introduction

Over many decades there has been much interest in polytypic materials and reasons for the
occurrence of the polytypes. Good reviews of the state of knowledge in 1966 and 1983
respectively are given by Verma and Krishna [1] and Krishna [2]. In some systems there is
a reasonably widely accepted mechanism for polytype formation, such as via giant screw
dislocations in zinc sulphide [3, 4], but similar work on silicon carbide is less conclusive
[5, 6]. Jagodzinski [7] suggested that the phonon free energy could be important in polytype
stabilization, and this effect has subsequently been shown to be important in SiC [8, 9]
and PbI2 [10]. However, in general there is still much uncertainty as to which polytypes
are stable phases, which merely growth phenomena, and what mechanisms stabilize them.
The phase diagram is often unclear due to long annealing times, and the influence that
dislocations and impurities may have over the phase grown.

The purpose of the present work is to consider further the role of the phonon free
energy in the stabilization of polytypes. In particular we consider its role in the higher-
order polytypes with complex stacking sequences and long unit cells. The investigation has
been stimulated by noting some similarities to and differences from the mathematical model
of Bak and Bruinsma [11], which gives an infinite sequence (‘devil’s staircase’) of complex
stable phases, as discussed below.

Polytypes usually arise when a crystal structure is formed of layers, each of which can
take one of two (or more) orientations without dramatically affecting the bonding structure.
Examples include CdI2, PbI2 and SiC.

For simplicity we shall consider a model similar to SiC, where each layer can be stacked
in one of two orientations, related by a 180◦ rotation (figure 1), but we believe the results
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Figure 1. A diagram of a simple polytype showing layers in two orientations denoted+ and
−. If this were the repeat unit, the polytype would be called〈23〉. The stacking boundary is
highlighted.

to be more general. It is convenient to refer to the two orientations as ‘+’ or ‘−’ layers
(figure 1), and a change in orientation as a ‘stacking boundary.’ We shall adopt the Zhdanov
notation [12] for the resulting polytypes, which simply counts the number of layers between
stacking boundaries in the repeat unit. Thus the sequence ‘+−−+− −’ would be called
〈12〉, and ‘+−+−+ −’ 〈11〉 or simply 〈1〉. The cubic structure, in which all layers have
the same orientation, is denoted〈∞〉

In previous work on polytypes [8, 13], the energy or free energy of a system has been
described by a sum over the layers as

E = J0N −
∑
i,n

Jnσiσi+n −
∑
i,n,m,o

Kn,m,oσiσi+nσi+mσi+o + · · · (1)

whereσi = ±1 depending on the orientation of theith layer andN is the number of layers.
Here J0 is the self-energy of a layer,Jn the pairwise interaction, andKn,m,o a four-layer
interaction. There are no terms for the interaction of an odd number of layers, as the energy
must be unchanged on reversing the sign of all of theσi—that is, simply rotating the crystal.
This form has been discussed critically by Shaw and Heine [14], and is an extension of
the more restrictive ANNNI model, which hasJn = 0 for n > 2. A review of polytypism
in general under the ANNNI model is given by Yeomans [15]. The full ANNNI model
includes nearest-neighbour interactions within the planes perpendicular to the stacking axis,
whereas as can be seen from figure 1, all atoms within a layer must take the same orientation
in the structure considered here—the energy cost of a kink on the stacking boundary would
be prohibitively large.

Figure 2. Contrasting nearest-neighbour and next-nearest-neighbour interactions, and showing
the two different orientations of boundary. Note the change of orientation of the figure with
respect to figure 1.
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The energy can also be expressed through consideration of the presence or absence of a
boundary, rather than the orientation of a layer. Just as there are two orientations for a layer,
there are also two orientations for a boundary, figure 2, and we note that the interaction
between like and unlike boundaries may be different. At every position at which a boundary
could occur a variableη can be defined, taking the value zero if there is no boundary, or
±1 according to the type of boundary. The energy can then be expressed as

E = J0N + I0Nb −
∑
i,n

Inηiηi+n + · · · (2)

whereNb is the number of boundaries,I0 is the self-energy of a boundary, andIn describes
the pairwise boundary interaction.

If equation (1) contains only pairwise terms, and no higher terms, then this description in
terms of boundaries also needs no terms higher that the pairwise term [8], and the boundary
interactionIn can be related to the layer interactionJn. In this case, withI j (n) defined
to be the interaction between two boundaries of separationn and with j − 1 intervening
boundaries, then

I j (n) = (−1)j+1I 1(n). (3)

This follows directly from equation (2) because neighbouring boundaries must be of opposite
type (figure 2), and thus the productηiηj will be −1 if i and j refer to neighbouring
boundaries, or boundaries with an even number of intervening boundaries, and+1 if
the number of intervening boundaries is odd. This simple alternation in the sign of the
interaction can be emphasized by denotingI 1(n) as simplyI (n), and then equation (2) can
be written in terms of a sum over boundary pairs as

E = J0N + I0Nb +
∑
pairs

(−1)j+1I (n). (4)

Figure 3. The densityρ of boundaries per unit length in a phase transition from〈2〉 to 〈3〉 via
an infinite staircase of intermediate phases as a function of some parameterµ.

Consider a phase transition between two simple structures such as from〈2〉 to 〈3〉 as a
function of temperature or other external variable such as pressure. It need not be a single
sharp transition but it could occur via intermediate phases, each stable over its own range
of temperatures. Indeed, the number of intermediate phases could be infinite, producing
what is called a ‘devil’s staircase’. This is shown schematically in figure 3, where an
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infinite number of phases, characterized byρ, occurs across a transition region between
two end-point phases as an external parameterµ is varied. Such a staircase can arise from
remarkably simple mathematical models [11, 16]. For instance, if identical entities are
placed on a grid, and they interact via a potential which is convex, repulsive, pairwise and
infinite-ranged, a staircase will result, as was shown by Bak and Bruinsma [11].

In polytypic phase transitions, the stacking boundaries can be considered to be the
entities of the Bak–Bruinsma model, and in this paper the interaction is considered to occur
via differences in the phonon free energy. However, the entities are not identical, as there
are two types of stacking boundary, and hence do not map directly onto the Bak–Bruinsma
model.

In this paper we consider simple structures in one, two and three dimensions, and a
simple representation of the interatomic forces by springs between nearest-neighbour point
masses. The model structures support stacking boundaries similar to those in figure 1,
and their phonon spectra and free energies can be readily calculated and analysed. The
calculations are much simpler than using a full shell model for the atomic interactions, so
the results can be obtained for systems with longer repeat distances, and hence long-range
boundary interactions studied. Computations on systems with a repeat distance of over one
hundred atoms can be carried out in less than an hour on a modest work-station with the
models presented here.

These models are used to find the boundary self-energy and interaction energy as a
function of separation. Once this has been done, the energy of much larger systems can
be calculated by using equation (4) directly. Energies of systems of 105 layers can be
calculated in a few seconds of computer time from this equation, and thus in a two-step
process the study of truly long-period polytypes is facilitated.

The simplest model would be that of a one-dimensional (1D) chain of balls and springs.
This supports phonons and has a corresponding phonon free energy, and boundaries can be
simulated by introducing the scattering perturbation of a changed mass or spring constant.
However, as is shown in the appendix, the resulting change in the phonon free energy is
independent of the relative position of the changed masses or spring constants, and hence
they do not interact. The 1D case will therefore not be considered further.

Figure 4. A simple 2D ball-and-spring model showing stacking reversals. The lines represent
springs. Note the two boundaries indicated by the arrows.

The next-simplest model considered is a two-dimensional ball-and-spring system. In
two dimensions it is possible to place springs in different orientations in different columns,
and thus produce a structure more closely analogous to a polytypic structure. As shown
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in figure 4, a square mesh is used in which each column has one diagonal link per cell,
sufficient to prevent zero-frequency modes, and sufficient to define an orientation for each
column. The figure shows two changes in orientation, or stacking boundaries. Comparison
with figure 1 shows that the structure is analogous to that of SiC.

We believe that our results have a much wider generality than the simplified model that
we have used. With identical masses and spring constants everywhere, and no bond-bending
term in its energy, this model is quite a long way removed from a real polytypic crystal,
although the essential symmetry properties have been retained. However, the system could
be analysed in terms of lattice waves travelling in perfect crystalline material, reflected and
diffracted at the stacking boundaries. The nature of the phonon spectra and the matching
conditions at boundaries are qualitatively universal, and thus we expect our results to be.

Extension to three dimensions is really necessary in order to move closer to the phonon
spectra of real crystals, and this is included in subsequent sections of this paper.

2. Methodology and interaction

2.1. Methodology

The approach taken in determining the form of the boundary–boundary interaction can be
considered in the following steps. The free energy of a boundary-free system is found, and
then the variation in energy for a system of two boundaries as their separation is varied. Thus
the boundary self-energy and nearest-neighbour interaction can be deduced. Then the next-
nearest-neighbour interaction is calculated by considering a group of three boundaries, and
this result is compared with a theoretical prediction based on the nearest-neighbour result.
Finally, the energies of some short-period polytypes are calculated, the model derived from
the first steps above re-fitted to these data, and the consistency checked.

All of these steps use the high-temperature limit of the phonon free energy, which is as
follows:

Fφ = kT
∑
n

ln

(
2 sinh

(
h̄ωn

2kT

))
≈ NφkT ln

(
h̄

kT

)
+ 1

2
kT 4 (5)

where

4 =
∑
n

ln(ω2
n) (6)

andNφ is the number of non-zero-frequency phonon modes,(N − 1)d in d dimensions.
The only term in this equation which depends on the polytype is4. Thus when

comparing the free energies of different polytypes, the other terms can be ignored.
Because the important free-energy differences are related to differences in the logarithms

of the eigenfrequencies, a uniform scaling of all of the eigenfrequencies produces no change
at all in the free-energy differences. Hence the choice of mass or spring constant is irrelevant,
and unity was used for both.

2.2. 2D interaction

Firstly 4 was calculated for a 120× 48 grid with periodic boundary conditions and no
stacking boundaries. All of the calculations were done on a 120× 48 grid, and this value
represents the energy of a boundary-free system, and will be denoted40. All other values
for 4s quoted have this grid self-energy of just under 8700 subtracted.
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By calculating the energies of various systems with stacking boundaries, it is hoped that
a formula such as

4 = 40+NbAbI0+ Ab
∑
i,j

I j−i (ri − rj ) (7)

can be applied, whereNb is the number of boundaries,Ab their area, andI0 andI j (n) the
self-energy and interaction energy of boundaries as described in section 1. The stacking
direction is chosen to be along the longer, 120-unit direction, soAb is 48. Ab is extracted
from I0 and I (n) to leave a quantity which should be almost independent of system size.
Once the form ofI j (n) has been found, the full two- or three-dimensional phonon calculation
can be reduced to a simple interaction on a one-dimensional system.

Figure 5. Systems with (a) a pair and (b) a triplet of boundaries used in determining nearest-
neighbour and next-nearest-neighbour interactions. A fourth boundary is required with the triplet,
as the boundaries must alternate in type. HereL is the length of the system in thex-direction,
the closed loop indicating the use of periodic boundary conditions.

On such a periodic system, the number of boundaries must be even, as shown by figure 5,
so the simplest systems that can be considered are those with two and four boundaries.

Considering a system with just a pair of boundaries of separationn on a grid of length
L and periodic boundary conditions, the value of4 will be given by

4(pair; n) = Ab(2I0+ I 1(n)+ I 1(L− n)+ 2I 2(L)+ I 3(L+ n)+ . . .) (8)

where4(pair; n) is the value of4 − 40 for a system with a pair of boundaries separated
by n. This can be approximated as

4(pair; n) ≈ Ab(2I0+ I 1(n)). (9)

Figure 6 shows a fit of this equation to computed data points forn between 1 and 10
assuming that

I (n) = a/n (10)

wherea and I0 are the only fitting parameters. The fit is extremely good, as can be seen,
and this is the only justification offered here for the functional form chosen. The values
produced from the fit areI0 = 0.121 968 anda = −0.046 493. The nearest-neighbour
interaction is seen to be attractive, in contrast to that required for a Bak–Bruinsma staircase.

Having thus found the nearest-neighbour interaction, we now seek the next-nearest-
neighbour interaction. This is obtained through consideration of a triplet of boundaries, as
shown in figure 5. Again considering just the most important terms contributing to4, and
removing40,

4(triplet; n) ≈ Ab(4I0+ 2I 1(n)+ I 2(2n)) (11)
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Figure 6. 4 − 40 in 2D as a function of the boundary separationn for an isolated pair of
boundaries on a 120× 48 grid, and a fit ofAb(2I0 + a/n).

or

I 2(2n) ≈ (4(triplet; n)− 24(pair; n))/Ab. (12)

As we expect from equation (3) that

I 2(n) ≈ −I 1(n) (13)

table 1 is constructed to test this theory.

Table 1. Calculation of next-nearest-neighbour interactions in 2D, and comparison with nearest-
neighbour interactions.

n 4(pair; n) 4(triplet; n) AbI
2(2n) −AbI1(2n) Difference

1 9.469 743 20.137 265 1.197 778 1.104 695 7.77%
2 10.604 305 21.842 675 0.634 064 0.554 107 12.61%
3 10.974 105 22.394 945 0.446 736 0.374 629 16.14%
4 11.154 893 22.660 211 0.350 425 0.284 108 18.92%
5 11.262 581 22.814 170 0.289 007 0.228 215 21.03%

This table agrees broadly with the prediction, being correct in sign and to within 25%
in magnitude. For the purposes of correcting the error from the omitted terms, it would
now be justifiable to assume that equation (13) is correct, and that the intervening boundary
has just caused a change of the sign ofI j (n). The next-nearest-neighbour interaction is
therefore repulsive.

Returning to the pair of boundaries, equation (8) can now be approximated as

4(pair; n) ≈ Ab
(

2I0+ I 1(n)+ n2 ∂
2I (x)

∂x2

∣∣∣∣
L

+ · · ·
)
. (14)

Thus equation (9) was a better approximation to equation (8) than could have been initially
justified, because the omitted terms tend to cancel.
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For the triplet structure the cancellation is not complete. Indeed, the group of three
boundaries acts like a single boundary when viewed from a long distance, so we have

4(triplet; n) = Ab(4I0+ 2I 1(n)+ I 2(2n)+ 2I (L/2)). (15)

A new table forI 2(n) can then be produced from the formula

I 2(2n) ≈ (4(triplet; n)− 24(pair; n)−4(pair;L/2))/Ab + 2I0. (16)

With this correction in place, table 2 is produced. The agreement now is very good
between the calculated free energy of the triplet system, and that predicted from the pairwise
interactions. This adds considerable justification to equation (3).

Table 2. More refined calculation of next-nearest-neighbour interactions in 2D, and comparison
with nearest-neighbour interactions.

n 4(pair; n) 4(triplet; n) AbI
2(2n) −AbI1(2n) Difference

1 9.469 743 20.137 265 1.131 678 1.104 695 2.38%
2 10.604 305 21.842 675 0.567 964 0.554 107 2.44%
3 10.974 105 22.394 945 0.380 636 0.374 629 1.58%
4 11.154 893 22.660 211 0.284 325 0.284 108 0.08%
5 11.262 581 22.814 170 0.222 907 0.228 215−2.38%

Calculation of further interactions, such asI 3(n), becomes increasingly difficult as
systems which contain the term of interest also contain an increasing number of other,
larger terms. Equation (3) suggests that the interaction should continue to alternate in sign,
and as a simple test of thisI 3(n) is calculated from the value of4 for a group of four
boundaries, each a distancen from its neighbours:

4(quad; n) ≈ 4I0+ 3I 1(n)+ 2I 2(2n)+ I 3(3n) (17)

all terms of the formI (L) tending to cancel. JustI 3(3) and I 3(6) were calculated in this
way, and the result agreed with equation (3) in sign and to within 121

2% in magnitude.
Rather than continuing to consider groups of five, six, seven and more boundaries,

this analysis of interactions beyondI 2(n) is concluded by considering4 for a grid full of
boundaries at constant separation, which can be calculated and fitted independently of the
above results. With a grid length,L, of 120, it is possible to place boundaries at separations
of 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 units, and equation (7) takes the form

4−40 = LAbI0/n+ LAb
n

∑
j

I j−1(r1− rj ) (18)

as all of the boundaries are identical. Fitting yields anI0 of 0.1218 and ana of −0.044 83—
both within 4% of the previously calculated values. A table of these data is given as table 3.
This is an independent fitting producing an independent check on the previous values for
I0 anda.

These results for 2D can be summarized by saying that equation (7) applies with

I j (n) = (−1)j+1a

n
. (19)

I0 = 0.122 anda = −0.046 49, using the results from the isolated pairs, as these results
are less sensitive to the approximation thatI 2(n) = −I 1(n).
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Table 3. An independent fit of equation (18) to a grid full of uniformly spaced boundaries.

Boundary spacing 4−40 Fitted result

2 305.971 306.059
3 214.154 213.982
4 164.302 164.215
5 133.182 133.161
6 111.940 111.962

10 68.266 68.3702
12 57.100 57.2237
15 45.842 45.9778
20 34.513 34.6325

Figure 7. 4 − 40 in 3D as a function of the boundary separationn for an isolated pair of
boundaries on a 120× 29× 29 grid, and a fit ofAb(2I0 + a/n2).

2.3. 3D interaction

The above analysis can be repeated for the analogous 3D structure. We take layers of
figure 4, retainingx as the unique axis, and stack them on top of one another in thez-
direction perpendicular to the page. In order to stabilize the structure, two diagonal springs
are added across every square in theyz- andxz-planes.

The calculation of the nearest-neighbour interaction follows from the free energy of a
system of the type shown in figure 5(a). A grid size of 120× 29× 29 is now used, and the
results are shown in figure 7, fitted extremely well by the function

4−40 = Ab
(

2I0+ a

n2

)
(20)

with I0 = 0.046 343 anda = −0.006 561.
The interaction with a second-neighbour boundary is determined again from

equation (16), and is compared with−I 1(n) in table 4. The agreement is not as good
as in the 2D system, indicating that the approximation of equation (13) does not apply as
closely in 3D as in 2D.
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Table 4. Calculation of next-nearest-neighbour interactions in 3D, and comparison with nearest-
neighbour interactions.

n 4(pair; n) 4(triplet; n) AbI
2(2n) −AbI1(2n) Difference

1 72.455 285 146.581 542 1.555 471 1.471 855 5.38%
2 76.478 145 153.437 573 0.365 784 0.338 992 7.32%
3 77.314 939 154.890 294 0.144 917 0.136 557 5.77%
4 77.611 008 155.409 684 0.072 169 0.072 406−0.33%
5 77.744 361 155.642 762 0.038 540 0.043 356−12.50%

Once more the energy of a grid full of a polytype can be calculated, and the result
fitted by an equation of the form of equation (18). This gives values corresponding to
I0 = 0.046 362 anda = 0.007 063. This provides reasonable independent agreement with
the previous values ofI0 = 0.046 343 anda = −0.006 561. Exact agreement is not expected
because of the assumption inherent in equation (3) that the interaction simply alternates in
sign as intervening boundaries are traversed, which is an approximate result.

3. Phase diagrams

After the above work in finding the form of4, the total free energy of the system can now
be expressed as

Ftot = F0+ 1

2
kT 4+NEel (21)

whereN is the number of atoms, andEel represents an electronic, that is a non-phonon
contribution toFtot . In SiC such a term has been the subject of calculations by Chenget al
[17] and K̈ackell et al [18]. Such a term can prevent the boundaries from coalescing and
disappearing, for it can provide strong short-range repulsion.

Choosing to focus on the〈2〉-to-〈3〉 transition which is so important in SiC, and assuming
that electronic interactions do not extend beyond four layers,Eel can be written as

Eel = 3Eel,〈3〉 − 2Eel,〈2〉 + 6ρ[Eel,〈2〉 − Eel,〈3〉] (22)

where ρ is the linear density of boundaries. In this case the electronic energiesEel,〈2〉
andEel,〈3〉 are almost identical, whereasEel,〈1〉 andEel,〈4〉 are significantly higher, and thus
prevent the boundaries from occurring at separations other than two or three. DefiningF̃

as a shiftedF per atom, with the terms independent of polytypes removed from both the
phonon and electronic free energies, we have

F̃ = 1

2
kT

(
ρI0+ 1

N

∑
i,j

I j−i (ri − rj )
)
− ρ 1Eel (23)

whereri is the position of theith boundary, and

1Eel = 6[Eel,〈3〉 − Eel,〈2〉]. (24)

It is then possible to consider̃F for each polytype in the limit of infinite system size
by defining the polytype-dependent sum

S〈 〉 = lim
N→∞

1

N

∑
i,j

I j−i (ri − rj ) (25)
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so that

F̃〈 〉 = 1

2
kT (ρI0+ S〈 〉)− ρ 1Eel. (26)

The stable polytype at a givenT will be the one with the minimumF̃ and hence the
minimumF .

The electronic term1Eel is necessary to produce any phase transitions at all. Without
it, all polytypes have the same free energy atT = 0, and nowhere else.

From the results for the form ofI j (n), it is now possible to calculateρI0+S〈 〉 for various
polytypes in two and three dimensions. This is shown in table 5 for the two-dimensional
case.

Table 5. Phonon contribution to the free energy of various polytypes in 2D.

Polytype ρ ρI0 + S〈〉
〈2〉 1

2 0.052 927

〈2223〉 4
9 0.047 597

〈23〉 2
5 0.043 306

〈233〉 3
8 0.040 990

〈232333〉 3
8 0.040 978

〈2333〉 4
11 0.039 918

〈3〉 1
3 0.037 075

Two of the polytypes selected in this table have the same value ofρ. For this pair, the
one with the lowerS〈 〉 or ρI0+S〈 〉 will be stable with respect to the other at all temperatures,
as the electronic contribution depends onρ only. Thus〈232333〉 is stable with respect to
〈233〉. This follows the suggestion of Chenget al [8] that this sort of interaction will favour
polytypes with an even number of layers in their repeat structure—that is, an even number
of symbols in their Zhdanov notation.

Two phasesa andb will be in equilibrium if they have the samẽF , that is if

1

2
kT (ρ〈a〉I0+ S〈a〉)− ρ〈a〉1Eel = 1

2
kT (ρ〈b〉I0+ S〈b〉)− ρ〈b〉1Eel (27)

or

T = 21Eel(ρ〈a〉 − ρ〈b〉)
k(ρ〈a〉I0+ S〈a〉 − ρ〈b〉I0− S〈b〉) . (28)

Hence1Eel sets the scale forT . If 1Eel = 0 there is no phase diagram, and for positive
transition temperatures1Eel must be positive, because the sign of the denominator is
dominated by theI0-terms whereI0 is positive. For convenience when plotting the phase
diagram, two reduced variables are introduced:

T ′ = kT

21Eel

F̃ ′ = F̃

1Eel

(29)

so that

F̃ ′〈 〉 = T ′(ρI0+ S〈 〉)− ρ. (30)
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Figure 8. The phase diagram from the 2D interaction showing〈2〉, 〈23〉 and 〈3〉 and their
regions of stability, in terms of the reduced variables defined in equation (29).

Figure 9. Detail of the transition from〈23〉 to 〈3〉 for the 2D case. There is no intermediate
phase here. A linear term, 0.04T ′, has been removed from all lines.

The reduced free energies of several polytypes in 2D are shown in figures 8 and 9. The
figures show that〈23〉 does have a short range of stability, whereas the other intermediate
phases do not. In this case the fractional width of the region of stability of〈23〉—that is,
1T divided by the transition temperature—is about 0.03. If therefore1Eel were such that
the transition occurred at around 2400 K,〈23〉 would be stable over about 70 K.

For the±n−2-interaction for 3D, the results are qualitatively the same, in that〈23〉 is
still stable, and only〈23〉 is stable between〈2〉 and〈3〉, but the stability range is significantly
smaller, with1T/T0 only 0.006. The free-energy difference in this case between〈23〉 and
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a mixture of〈2〉 and〈3〉 is very small—around 5×10−6kT . This is still significant, for the
stacking boundaries are forced to be flat due to the very high energy penalty, of the order of
eV, of creating any kink on them. Thus all of the atoms within one layer—a figure which
could easily be over one million—act as a single unit in respect of this degree of freedom.
The energy change on reorienting this unit is therefore greater thankT .

4. The phase〈nn+ 1〉

Having shown for two specific cases that〈23〉 occurs as an intermediate phase between〈2〉
and 〈3〉, it is natural to wonder whether this result is more general. Indeed it is, and there
follows a proof that the phase〈n n+ 1〉 will occur between the phases〈n〉 and〈n+ 1〉 for
interactions of the form

I j (n) = (−1)j+1n−α (31)

for integer values ofα between one and four, and probably all positiveα. The proof for
α = 1 follows.

The free energy of a polytype〈n〉 is given by

F̃〈n〉 = 1

2
kT (ρ〈n〉I0+ S〈n〉)− ρ〈n〉1E (32)

and there must exist someTc at which F̃〈n〉 = F̃〈n+1〉—that is, at which〈n〉 and〈n+ 1〉 are
mutually in equilibrium.

At this Tc, a system can exist which is partially〈n〉 and partially〈n+1〉. Such a system,
consisting of a fractionχ of 〈n〉 and 1− χ of 〈n+ 1〉 would have a free energy given by

F̃mix = 1

2
kTc(ρI0+ χS〈n〉 + (1− χ)S〈n+1〉)− ρ 1E (33)

whereρ is simply the density of the boundaries in the mixture. Ifχ = n/(2n+ 1) thenρ
is the same as that for the polytype〈n n + 1〉. If 〈n n + 1〉 is to be stable, its free energy
must be less than that of the mixture of〈n〉 and〈n+ 1〉. In other words

S〈n n+1〉 <
n

2n+ 1
S〈n〉 + n+ 1

2n+ 1
S〈n+1〉. (34)

Considering the case of the±1/n interaction—that is, the 2D case—and ignoring the
multiplicative constanta in the definition ofS〈 〉 (equation (25)), we have

S〈n〉 = −1

n
+ 1

2n
− 1

3n
+ 1

4n
− · · ·

S〈n+1〉 = − 1

n+ 1
+ 1

2n+ 2
− 1

3n+ 3
+ 1

4n+ 4
− · · ·

2S〈n n+1〉 = −1

n
+ 1

2n+ 1
− 1

3n+ 1
+ 1

4n+ 2

− 1

n+ 1
+ 1

2n+ 1
− 1

3n+ 2
+ 1

4n+ 2
− · · · .

(35)

These expressions may be manipulated to give

2n

2n+ 1
S〈n〉 + 2n+ 2

2n+ 1
S〈n+1〉 = − 2

n+ 1
2

+ 2

2n+ 1
− 2

3n+ 3
2

+ 2

4n+ 2
− · · · (36)

and

2S〈n n+1〉 = −1

n
− 1

n+ 1
+ 2

2n+ 1
− 1

3n+ 1
− 1

3n+ 2
+ 2

4n+ 2
− · · · . (37)
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Performing the comparison termwise, the condition for〈n n+ 1〉 being stable reduces to

−1

n
− 1

n+ 1
< − 2

n+ 1
2

(38)

and similar forms, all of which are clearly true. Thus〈n n + 1〉 is a stable with respect to
〈n〉 and〈n+ 1〉 at some temperature for the±1/n interaction.

This analysis can be repeated for other interactions, and one of the authors (MJR) has
repeated it for±n−α for α equal to 2, 3 and 4 with the aid of computer-assisted algebra.
The conclusion is that〈n n + 1〉 always has a stability range. The important value ofα is
2, that corresponding to 3D.

5. Conclusions

Previous work has shown that phonon free energy can cause phase transitions between
polytypes. In this work the interaction between adjacent stacking boundaries,I 1(n) has
been obtained to much greater distances than before through the use of a simplified model,
and has been shown to depend onn as−a/n in 2D and−a/n2 in 3D for moderate values
of n (1 to 10). We have also shown thatI 2(n) = −I 1(n) as previously predicted [8].

Although further interactions, such asI 3(n), are progressively more difficult to calculate,
data do suggest thatI 3(n) ≈ I 1(n) in the 2D case. In 3D the calculation is more prone
to errors, as the most significantI 3-term occurs when four boundaries are adjacent, a
configuration whose energy has terms such as 4I0, 3I 1(1) and 2I 2(2) as well asI 3(3), and
|3I 1(1)| + |2I 2(2)| is expected to be over thirty times the modulus of the term of interest.

We expect the form ofI (n) found to be general, not just because of the extreme
regularity of the resultn1−d for d = 1, 2, 3, but also because of an alternative approach to
the deduction of phonon spectra. If the spectrum were to be analysed in terms of lattice
waves, only the scattering properties of the boundaries would be important in determining
the spectral differences on moving the boundaries. These scattering properties will be
qualitatively universal, and we expect our results for the interaction to be so too.

The alternation of sign in the interaction between boundaries, or equivalently the
existence of two types of boundary, prevents the system from mapping directly onto the
Bak–Bruinsma model. Instead of a devil’s staircase, we find a single step—that is, the
phase〈n n + 1〉—to be stable in all cases. Between〈2〉 and 〈3〉 in 2D and 3D we have
found no other stable phase, and one of us (MJR) has checked for the existence of other
intermediate phases between〈1〉 and 〈2〉, and〈3〉 and 〈4〉, in 2D, and found none. Phases
with an odd number of symbols in their Zhdanov notation are also found to be less favoured
than those with the same density and an even number of symbols, a result which confirms
the prediction of Chenget al [8].

Although we have often referred to SiC in this paper, it must be mentioned that this
model is not perfect for SiC. In particular in SiC the stacked layers are displaced by one third
of their repeat distance to one side, causing, perhaps, the four-layer term of equation (1)
to become more important [14]. Other systems, such as PbI2, have other complications—
in this case the iodide and lead ions form stacking structures in a manner which is almost
independent, leading to more freedom than a simple rotation for each layer stacked. A fuller
discussion of these results with respect to silicon carbide will be published shortly [19].
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Appendix A. 1D chains

In this appendix an analytic proof is presented showing that there is no interactions between
changed masses or spring constants on a one-dimensional chain. Such a chain is shown in
figure A1, and its equation of motion is

ω2ui = Aijuj (A1)

where

ui = √mixi (A2)

and

Aij =
{
(ki−1+ ki)/mi j = i
−ki/√mimj j = i ± 1.

(A3)

Figure A1. A chain of balls and springs showing differing masses and spring constants.xi
denotes the displacement from equilibrium.

The important quantity in this analysis is the sum of the logs of the eigenvalues—that
is, the4 of this paper. This is equivalently the log of the determinant:

4 =
∑
i

ln(ω2
i ) = ln

∏
i

(ω2
i ) = ln detA. (A4)

If a matrix B is defined to be equal toA but without the factors ofm, then as eachmi
appears to the power of−0.5 throughout just one row and one column,

detA = detB
∏
i

(mi)
−1. (A5)

In particular, ifmi = mj = M, and all of the other masses are of valuem, then the value
of detA is independent ofi − j , the separation of the changed masses. Thus there is no
interaction between two changed masses on a 1D chain via the phonon free energy in the
high-temperature limit.

In order to consider changes in theks, it is necessary to transformB somewhat. B
represents the equations of motion for a system of unit masses, the masses having been
factored out of the original matrixA. These equations are as follows:

−ω2ui = ki−1ui−1− (ki−1+ ki)ui + kiui+1

−ω2ui+1 = kiui − (ki + ki+1)ui+1+ ki+1ui+2.
(A6)
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These equations are written twice to ease the transformation fromui to a coordinate
ei = ui+1− ui , which is achieved by subtracting the first line from the second. Thus:

−ω2ei = ki−1ei−1− 2kiei + ki+1ei+1 (A7)

or, in matrix form,

ω2ei = Cij ej (A8)

with

Cij =


−ki−1 j = i − 1

2ki j = i
−ki+1 j = i + 1.

(A9)

And finally,

detC = detD
∏
i

(ki) (A10)

whereD is the matrix with 2 on the leading diagonal, and−1 on the first off-diagonal. So
once more

∑
lnω2 is independent of the position or relative position of any changedks.
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